257.5 ± 0 diethyltoluamide

11 ChemSpider | Search and share chemistry. [accessed 2021 Jun 21].

12 Moore SJ, Debboun M. 2006. History of insect repellents. In: Insect

13 Eisner T, Grant R. 1981. Toxicity, odor aversion, and "olfactory

14 Wyatt TD. 2003. Animals in a Chemical World. In: Pheromones and

REFERENCES

1 Masterton WL, Hurley CN. 2015. Chemistry: principles and reactions. Cengage Learning. 7th ed

2 Abelian A, Dybek M, vvWallach J, Gaye B, Adejare A. 2021. Pharmaceutical chemistry. In: Adejare A. Remington: The Science and Practice of Pharmay. 23rd ed. 103-128

3 Zvereva EL, Kozlov MV. 2016. The costs and effectiveness of chemical defenses in herbivorous insects: A meta-analysis. Ecol Monogr. 86(1):107–124

4 Tschinkel WR. 1975. A comparative study of the chemical defensive system of tenebrionid beetles: Chemistry of the secretions. J Insect Physiol. 21(4):753–783 7

5 Cronin MD. 2006. The Role of Hydrophobicity in Toxicity Prediction. Curr Comput Aided-Drug Des. 2(4):405–413

To see the studies included in our meta-analysis scan the QR code

8 Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2009. Introduction to Meta-Analysis. John Wiley & Sons, Ltd. 1st ed

9 Lajeunesse MJ. 2009. Meta-Analysis and the Comparative Phylogenetic Method. 174(3): 369-381

10 Nakagawa S, Santos ESA. 2012. Methodological issues and advances in biological meta-analysis. Evol Ecol. 26(5):1253–1274.

To estimate the effectiveness, we computed effect sizes based on means (Standardized means difference) or number of events (Odds ratio), and converted both to Hedges'g⁸. We ran a multilevel meta-analysis, accounting for different types of dependence^{9,10} and selected the best model using the Akaike Information Criterion for small samples (AICc).

> 6 Speight JG. 2017. Properties of Organic Compounds. In: Environmental Organic Chemistry for Engineers. Butterworth-Heinemann. 1st ed. 87-151

7 Nerio LS, Olivero-Verbel J, Stashenko E. 2010. Repellent activity of essential oils: A review. Bioresour Technol. 101(1):372–378

https://www.chemspider.com/.

Repellents: Principles, Methods, and Uses. Debboun M, Fraces S, Strickman

D, editors. Taylor & Francis. 1st ed

aposematism". Science. 213(4506):476–476.

In conclusion, in arthropods, the most effective chemical defenses are volatile, and this could mean that predator olfaction is a key factor for this type of defense. However, these chemical susbtances are not extremely volatile, which can suggest a trade-off between fast delivery to a predator, but not so fast that could immediately dissipate in the air.

Animal Behaviour: Communication by Smell and Taste. Cambridge University

Press. 1st ed. 1-22

Volatility: a key property affecting effectiveness of arthropods' chemical defenses

Nathalia G Ximenes1,3, Vinicius de Moraes, Danilo Rocha1, Felipe M Gawryszewski2, Rodrigo H Willemart1

chemical group:

Atoms united in particular combinations, through covalent bonds2 (shared electrons pairs¹), E.g. phenol, alcohol. Different chemical *substances can belong to the same chemical group* **log p:** Ratio of solubility in a lipid medium to an aqueous medium¹ boiling point: *Tendency of a liquid change to gaseous state6*

substances found in insect repellents, and insect repellency literature suggests that volatility is an essential property¹². The effectiveness of volatile chemicals may be linked to the fact that they spread rapidly in the air, consequently: (1) it is one of the first components to be perceived by a predator, discouraging an attack¹³; (2) it is difficult to predict the localization of the emitter¹⁴, thus it can be used in the dark¹⁴, which might be an advantage for nocturnal animals.

1Universidade de São Paulo, 2Universidade de Brasília, 3corresponding author: xg.nathalia@gmail.com

Chemical substances have a set of traits that identifies them: while chemical properties refer to changes that modify the identity of the substance, physical properties do not¹. The latter include the boiling point (liquid/vapor state) and lipophilicity (solubility in a lipid medium²). Chemical defenses of insects vary in effectiveness according to the chemical group they belong to³. But in fact, physical properties may be even more important than considering the chemical group⁴. Our aim was to understand the role of physical properties on the effectiveness of arthropods'

chemical defenses. Therefore, we considered lipophilicity (using values of log p^1 as a proxy), which may facilitate chemicals to cross cells' phospholipidic membrane and, thus, reach the site of action⁵. We also included volatility⁶ (boiling point – BP – as proxy), which is related to the duration of exposure of olfactory sensilla to the chemical defense⁷. Besides physical properties, we assessed the prey model used in experiments (which we called 'prey type'); prey aggregation; quantity of chemical substances; and whether bird and arthropod predators respond differently.

GLOSSARY

Hedges'g = 1.84, lower 95%

CI = 1.14, upper 95%

CI = 2.54, pseudo-R² = 0.23

Effect sizes of predators deterrence

due to prey chemical defense, and

 $mmHg$, $N_{\text{studies}} = 41$, $N_{\text{effect size}} = 120$

the respective boiling point (°C/ 760

acknowledgements

I am grateful for Animal Behavior Society and CAPES grants, for the FAPESP scholarship (number 2021/02098-4) and to Vítor Marques for all the help and love.