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Volatility: a key property affecting 
effectiveness of arthropods’ chemical defenses
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To estimate the e�ectiveness, we 
computed e�ect sizes based on means 
(Standardized means di�erence) or 
number of events (Odds ratio), and 
converted both to Hedges’g8. We ran a 
multilevel meta-analysis, accounting 
for di�erent types of dependence9,10 
and selected the best model using the 
Akaike Information Criterion for small 
samples (AICc).

�e model with 
lowest AICc included 
only the boiling point, 
which showed a 
negative relationship 
between effect size 
and boiling point.

Chemical substances have a set of traits that identi�es 
them: while chemical properties refer to changes that 
modify the identity of the substance, physical properties do 
not1. �e latter include the boiling point (liquid/vapor state) 
and lipophilicity (solubility in a lipid medium²). Chemical 
defenses of insects vary in e�ectiveness according to the 
chemical group they belong to3. But in fact, physical 
properties may be even more important than considering 
the chemical group4. Our aim was to understand the role of 
physical properties on the e�ectiveness of arthropods’ 

chemical defenses. �erefore, we considered lipophilicity 
(using values of log p¹ as a proxy), which may facilitate 
chemicals to cross cells’ phospholipidic membrane and, thus, 
reach the site of action5. We also included volatility6 (boiling 
point – BP – as proxy), which is related to the duration of 
exposure of olfactory sensilla to the chemical defense7. 
Besides physical properties, we assessed the prey model 
used in experiments (which we called ‘prey type’); prey 
aggregation; quantity of chemical substances; and whether 
bird and arthropod predators respond di�erently.

chemical group: 
Atoms united in particular combinations, through covalent bonds2 
(shared electrons pairs1), E.g. phenol, alcohol. Di�erent chemical 
substances can belong to the same chemical group

log p: Ratio of solubility in a lipid medium to an aqueous medium¹

boiling point: Tendency of a liquid change to gaseous state6

In conclusion, in arthropods, the most e�ective chemical 
defenses are volatile, and this could mean that predator 
olfaction is a key factor for this type of defense. However, 
these chemical susbtances are not extremely volatile, which 
can suggest a trade-o� between fast delivery to a predator, 
but not so fast that could immediately dissipate in the air.

substances found in insect repellents, and insect 
repellency literature suggests that volatility is an 
essential property12. �e e�ectiveness of volatile 
chemicals may be linked to the fact that they spread 
rapidly in the air, consequently: (1) it is one of the �rst 
components to be perceived by a predator, discouraging 
an attack13; (2) it is di�cult to predict the localization of 
the emitter14, thus it can be used in the dark14, which 
might be an advantage for nocturnal animals.

�is means that chemical defenses in which the main 
substance had lower BP values, that is, higher volatility, 
were more e�ective against predation than those whose 
the main chemical substance had higher BPs. �e values 
of BP of our dataset varied from 100.6 to 675.6° C/760 
mmHg, with most of the frequent values around 200 - 
300. Compared to common substances, such as ethanol, 
water, and acid acetic11, BP values of those chemical 
defenses are not extremely low. Additionally, the most 
frequent BPs values match with values of chemical 

1Universidade de São Paulo, 2Universidade de Brasília, 3corresponding author: xg.nathalia@gmail.com

Proportion (%) of predators and prey 
taxa from the studies included

Hedges’g = 1.84, lower 95% 
CI = 1.14, upper 95% 
CI = 2.54, pseudo-R² = 0.23

Effect sizes of predators deterrence 
due to prey chemical defense, and 

the respective boiling point (°C/ 760 
mmHg), Nstudies = 41, Neffect size=120 
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